Insulin-Like Growth Factor (IGF2) Significantly Enhances Memory Retention and Prevents Forgetting in Rats

Scientists at the Mount Sinai School of Medicine Department of Neuroscience report that, in rats, the administration of insulin-like growth factor II (IGF-II, also known as IGF2) significantly enhances memory retention and prevents forgetting.

Inhibitory avoidance learning (shocking the rat when walked into a dark area of their cage) leads to an increase in hippocampal expression of IGF-II, which requires the transcription factor CCAAT enhancer binding protein β and is essential for memory consolidation.

Furthermore, injections of recombinant IGF-II into the hippocampus after either training or memory retrieval significantly enhance memory retention and prevent forgetting. To be effective, IGF-II needs to be administered within a sensitive period of memory consolidation.

IGF-II-dependent memory enhancement requires IGF-II receptors, new protein synthesis, the function of activity-regulated cytoskeletal-associated protein and glycogen-synthase kinase 3 (GSK3). Moreover, it correlates with a significant activation of synaptic GSK3β and increased expression of GluR1 (also known as GRIA1) α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid receptor subunits. In hippocampal slices, IGF-II promotes IGF-II receptor-dependent, persistent long-term potentiation after weak synaptic stimulation. Thus, IGF-II may represent a novel target for cognitive enhancement therapies.

There are other Insulin-Like Growth Factors …
The IGF “axis” is also commonly referred to as the Growth Hormone/IGF1 Axis. Insulin-like growth factor 1 (IGF-1) is mainly secreted by the liver as a result of stimulation by growth hormone (GH). IGF-1 is important for both the regulation of normal physiology, as well as a number of pathological states, including cancer. The IGF axis has been shown to play roles in the promotion of cell proliferation and the inhibition of cell death (apoptosis).

Insulin-like growth factor 2 (IGF-2) is thought to be a primary growth factor required for early development while IGF-1 expression is required for achieving maximal growth. Gene knockout studies in mice have confirmed this, though other animals are likely to regulate the expression of these genes in distinct ways. While IGF-2 may be primarily fetal in action it is also essential for development and function of organs such as the brain, liver and kidney.